我们将会看到一些在Python中使用线程的实例和如何避免线程之间的竞争。
你应当将下边的例子运行多次,以便可以注意到线程是不可预测的和线程每次运行出的不同结果。
声明:从这里开始忘掉你听到过的关于GIL的东西,因为GIL不会影响到我想要展示的东西。
我们将要请求五个不同的url:
import time
import urllib2
def get_responses():
urls = [
\'http://www.google.com\',
\'http://www.amazon.com\',
\'http://www.ebay.com\',
\'http://www.alibaba.com\',
\'http://www.reddit.com\'
]
start = time.time()
for url in urls:
print url
resp = urllib2.urlopen(url)
print resp.getcode()
print \"Elapsed time: %s\" % (time.time()-start)
get_responses()
输出:
http://www.google.com 200
http://www.amazon.com 200
http://www.ebay.com 200
http://www.alibaba.com 200
http://www.reddit.com 200
Elapsed time: 3.0814409256
解释:
import urllib2
import time
from threading import Thread
class GetUrlThread(Thread):
def __init__(self, url):
self.url = url
super(GetUrlThread, self).__init__()
def run(self):
resp = urllib2.urlopen(self.url)
print self.url, resp.getcode()
def get_responses():
urls = [
\'http://www.google.com\',
\'http://www.amazon.com\',
\'http://www.ebay.com\',
\'http://www.alibaba.com\',
\'http://www.reddit.com\'
]
start = time.time()
threads = []
for url in urls:
t = GetUrlThread(url)
threads.append(t)
t.start()
for t in threads:
t.join()
print \"Elapsed time: %s\" % (time.time()-start)
get_responses()
输出:
http://www.reddit.com 200
http://www.google.com 200
http://www.amazon.com 200
http://www.alibaba.com 200
http://www.ebay.com 200
Elapsed time: 0.689890861511
解释:
关于线程:
我们将会用一个程序演示一下多线程间的资源竞争,并修复这个问题。
from threading import Thread
#define a global variable
some_var = 0
class IncrementThread(Thread):
def run(self):
#we want to read a global variable
#and then increment it
global some_var
read_value = some_var
print \"some_var in %s is %d\" % (self.name, read_value)
some_var = read_value + 1
print \"some_var in %s after increment is %d\" % (self.name, some_var)
def use_increment_thread():
threads = []
for i in range(50):
t = IncrementThread()
threads.append(t)
t.start()
for t in threads:
t.join()
print \"After 50 modifications, some_var should have become 50\"
print \"After 50 modifications, some_var is %d\" % (some_var,)
use_increment_thread()
多次运行这个程序,你会看到多种不同的结果。
解释:
为什么没有达到50?
from threading import Lock, Thread
lock = Lock()
some_var = 0
class IncrementThread(Thread):
def run(self):
#we want to read a global variable
#and then increment it
global some_var
lock.acquire()
read_value = some_var
print \"some_var in %s is %d\" % (self.name, read_value)
some_var = read_value + 1
print \"some_var in %s after increment is %d\" % (self.name, some_var)
lock.release()
def use_increment_thread():
threads = []
for i in range(50):
t = IncrementThread()
threads.append(t)
t.start()
for t in threads:
t.join()
print \"After 50 modifications, some_var should have become 50\"
print \"After 50 modifications, some_var is %d\" % (some_var,)
use_increment_thread()
再次运行这个程序,达到了我们预期的结果。
解释:
让我们用一个例子来证明一个线程不能影响其他线程内的变量(非全局变量)。
time.sleep()可以使一个线程挂起,强制线程切换发生。
from threading import Thread
import time
class CreateListThread(Thread):
def run(self):
self.entries = []
for i in range(10):
time.sleep(1)
self.entries.append(i)
print self.entries
def use_create_list_thread():
for i in range(3):
t = CreateListThread()
t.start()
use_create_list_thread()
运行几次后发现并没有打印出争取的结果。当一个线程正在打印的时候,cpu切换到了另一个线程,所以产生了不正确的结果。我们需要确保print self.entries是个逻辑上的原子操作,以防打印时被其他线程打断。
我们使用了Lock(),来看下边的例子。
from threading import Thread, Lock
import time
lock = Lock()
class CreateListThread(Thread):
def run(self):
self.entries = []
for i in range(10):
time.sleep(1)
self.entries.append(i)
lock.acquire()
print self.entries
lock.release()
def use_create_list_thread():
for i in range(3):
t = CreateListThread()
t.start()
use_create_list_thread()
这次我们看到了正确的结果。证明了一个线程不可以修改其他线程内部的变量(非全局变量)。
原文:Understanding Threads in Python
翻译:acmerfight
下一篇:python中的编码问题