锁
python的内置数据结构比如列表和字典等是线程安全的,但是简单数据类型比如整数和浮点数则不是线程安全的,要这些简单数据类型的通过操作,就需要使用锁。
#!/usr/bin/env python3 # coding=utf-8 import threading shared_resource_with_lock = 0 shared_resource_with_no_lock = 0 COUNT = 100000 shared_resource_lock = threading.Lock() ####LOCK MANAGEMENT## def increment_with_lock(): global shared_resource_with_lock for i in range(COUNT): shared_resource_lock.acquire() shared_resource_with_lock += 1 shared_resource_lock.release() def decrement_with_lock(): global shared_resource_with_lock for i in range(COUNT): shared_resource_lock.acquire() shared_resource_with_lock -= 1 shared_resource_lock.release() ####NO LOCK MANAGEMENT ## def increment_without_lock(): global shared_resource_with_no_lock for i in range(COUNT): shared_resource_with_no_lock += 1 def decrement_without_lock(): global shared_resource_with_no_lock for i in range(COUNT): shared_resource_with_no_lock -= 1 ####the Main program if __name__ == \"__main__\": t1 = threading.Thread(target = increment_with_lock) t2 = threading.Thread(target = decrement_with_lock) t3 = threading.Thread(target = increment_without_lock) t4 = threading.Thread(target = decrement_without_lock) t1.start() t2.start() t3.start() t4.start() t1.join() t2.join() t3.join() t4.join() print (\"the value of shared variable with lock management is %s\"\\ %shared_resource_with_lock) print (\"the value of shared variable with race condition is %s\"\\ %shared_resource_with_no_lock)
执行结果:
$ ./threading_lock.py
the value of shared variable with lock management is 0 the value of shared variable with race condition is 0
又如:
import random import threading import time logging.basicConfig(level=logging.DEBUG, format=\'(%(threadName)-10s) %(message)s\', ) class Counter(object): def __init__(self, start=0): self.lock = threading.Lock() self.value = start def increment(self): logging.debug(time.ctime(time.time())) logging.debug(\'Waiting for lock\') self.lock.acquire() try: pause = random.randint(1,3) logging.debug(time.ctime(time.time())) logging.debug(\'Acquired lock\') self.value = self.value + 1 logging.debug(\'lock {0} seconds\'.format(pause)) time.sleep(pause) finally: self.lock.release() def worker(c): for i in range(2): pause = random.randint(1,3) logging.debug(time.ctime(time.time())) logging.debug(\'Sleeping %0.02f\', pause) time.sleep(pause) c.increment() logging.debug(\'Done\') counter = Counter() for i in range(2): t = threading.Thread(target=worker, args=(counter,)) t.start() logging.debug(\'Waiting for worker threads\') main_thread = threading.currentThread() for t in threading.enumerate(): if t is not main_thread: t.join() logging.debug(\'Counter: %d\', counter.value)
执行结果:
$ python threading_lock.py
(Thread-1 ) Tue Sep 15 15:49:18 2015 (Thread-1 ) Sleeping 3.00 (Thread-2 ) Tue Sep 15 15:49:18 2015 (MainThread) Waiting for worker threads (Thread-2 ) Sleeping 2.00 (Thread-2 ) Tue Sep 15 15:49:20 2015 (Thread-2 ) Waiting for lock (Thread-2 ) Tue Sep 15 15:49:20 2015 (Thread-2 ) Acquired lock (Thread-2 ) lock 2 seconds (Thread-1 ) Tue Sep 15 15:49:21 2015 (Thread-1 ) Waiting for lock (Thread-2 ) Tue Sep 15 15:49:22 2015 (Thread-1 ) Tue Sep 15 15:49:22 2015 (Thread-2 ) Sleeping 2.00 (Thread-1 ) Acquired lock (Thread-1 ) lock 1 seconds (Thread-1 ) Tue Sep 15 15:49:23 2015 (Thread-1 ) Sleeping 2.00 (Thread-2 ) Tue Sep 15 15:49:24 2015 (Thread-2 ) Waiting for lock (Thread-2 ) Tue Sep 15 15:49:24 2015 (Thread-2 ) Acquired lock (Thread-2 ) lock 1 seconds (Thread-1 ) Tue Sep 15 15:49:25 2015 (Thread-1 ) Waiting for lock (Thread-1 ) Tue Sep 15 15:49:25 2015 (Thread-1 ) Acquired lock (Thread-1 ) lock 2 seconds (Thread-2 ) Done (Thread-1 ) Done (MainThread) Counter: 4
acquire()中传入False值,可以检查是否获得了锁。比如:
import logging import threading import time logging.basicConfig(level=logging.DEBUG, format=\'(%(threadName)-10s) %(message)s\', ) def lock_holder(lock): logging.debug(\'Starting\') while True: lock.acquire() try: logging.debug(\'Holding\') time.sleep(0.5) finally: logging.debug(\'Not holding\') lock.release() time.sleep(0.5) return def worker(lock): logging.debug(\'Starting\') num_tries = 0 num_acquires = 0 while num_acquires < 3: time.sleep(0.5) logging.debug(\'Trying to acquire\') have_it = lock.acquire(0) try: num_tries += 1 if have_it: logging.debug(\'Iteration %d: Acquired\', num_tries) num_acquires += 1 else: logging.debug(\'Iteration %d: Not acquired\', num_tries) finally: if have_it: lock.release() logging.debug(\'Done after %d iterations\', num_tries) lock = threading.Lock() holder = threading.Thread(target=lock_holder, args=(lock,), name=\'LockHolder\') holder.setDaemon(True) holder.start() worker = threading.Thread(target=worker, args=(lock,), name=\'Worker\') worker.start()
执行结果:
$ python threading_lock_noblock.py
(LockHolder) Starting (LockHolder) Holding (Worker ) Starting (LockHolder) Not holding (Worker ) Trying to acquire (Worker ) Iteration 1: Acquired (LockHolder) Holding (Worker ) Trying to acquire (Worker ) Iteration 2: Not acquired (LockHolder) Not holding (Worker ) Trying to acquire (Worker ) Iteration 3: Acquired (LockHolder) Holding (Worker ) Trying to acquire (Worker ) Iteration 4: Not acquired (LockHolder) Not holding (Worker ) Trying to acquire (Worker ) Iteration 5: Acquired (Worker ) Done after 5 iterations
线程安全锁
threading.RLock()
返回可重入锁对象。重入锁必须由获得它的线程释放。一旦线程获得了重入锁,同一线程可不阻塞地再次获得,获取之后必须释放。
通常一个线程只能获取一次锁:
import threading lock = threading.Lock() print \'First try :\', lock.acquire() print \'Second try:\', lock.acquire(0)
执行结果:
$ python threading_lock_reacquire.py
First try : True Second try: False
使用RLock可以获取多次锁:
import threading lock = threading.RLock() print \'First try :\', lock.acquire() print \'Second try:\', lock.acquire(0)
执行结果:
python threading_rlock.py
First try : True Second try: 1
再来看一个例子:
#!/usr/bin/env python3 # coding=utf-8 import threading import time class Box(object): lock = threading.RLock() def __init__(self): self.total_items = 0 def execute(self,n): Box.lock.acquire() self.total_items += n Box.lock.release() def add(self): Box.lock.acquire() self.execute(1) Box.lock.release() def remove(self): Box.lock.acquire() self.execute(-1) Box.lock.release() ## These two functions run n in separate ## threads and call the Box\'s methods def adder(box,items): while items > 0: print (\"adding 1 item in the box\\n\") box.add() time.sleep(5) items -= 1 def remover(box,items): while items > 0: print (\"removing 1 item in the box\") box.remove() time.sleep(5) items -= 1 ## the main program build some ## threads and make sure it works if __name__ == \"__main__\": items = 5 print (\"putting %s items in the box \" % items) box = Box() t1 = threading.Thread(target=adder,args=(box,items)) t2 = threading.Thread(target=remover,args=(box,items)) t1.start() t2.start() t1.join() t2.join() print (\"%s items still remain in the box \" % box.total_items)
执行结果:
$ python3 threading_rlock2.py
putting 5 items in the box adding 1 item in the box removing 1 item in the box adding 1 item in the box removing 1 item in the box adding 1 item in the box removing 1 item in the box removing 1 item in the box adding 1 item in the box removing 1 item in the box adding 1 item in the box 0 items still remain in the box