最近在用python做数据统计,这里总结了一些最近使用时查找和总结的一些小技巧,希望能帮助在做这方面时的一些童鞋。有些技巧是很平常的用法,平时我们没有注意,但是在特定场景,这些小方法还是能带来很大的帮助。
1.在字典中将键映射到多个值上面
{\'b\': [4, 5, 6], \'a\': [1, 2, 3]}
有时候我们在统计相同key值的时候,希望把所有相同key的条目添加到以key为键的一个字典中,然后再进行各种操作,这时候我们就可以使用下面的代码进行操作:
from collections import defaultdict d = defaultdict(list) print(d) d[\'a\'].append(1) d[\'a\'].append(2) d[\'a\'].append(3) d[\'b\'].append(4) d[\'b\'].append(5) d[\'b\'].append(6) print(d) print(d.get(\"a\")) print(d.keys()) print([d.get(i) for i in d])
这里是使用了collections中的方法,这里面还拥有很多有用的方法,我们有时间在继续进行深入了解。
上面代码运行结果:
defaultdict(, {}) defaultdict(, {\'b\': [4, 5, 6], \'a\': [1, 2, 3]}) [1, 2, 3] dict_keys([\'b\', \'a\']) [[4, 5, 6], [1, 2, 3]]
我们将数据填入之后,相当于进行快速分组,然后遍历每个组就可以统计一些我们需要的数据。
2.迅速转换字典键值对
data = {...} zip(data.values(), data.keys())
data是我们的格式数据,使用zip后进行快速键值转换,然后可以使用max,min之类函数进行数据操作。
3.通过公共键对字典进行排序
from operator import itemgetter data = [ {\'name\': \"bran\", \"uid\": 101}, {\'name\': \"xisi\", \"uid\": 102}, {\'name\': \"land\", \"uid\": 103} ] print(sorted(data, key=itemgetter(\"name\"))) print(sorted(data, key=itemgetter(\"uid\")))
数据格式就是data,我们想要对name或者uid进行排序我们就是用代码中的方法。
运行结果:
[{\'name\': \'bran\', \'uid\': 101}, {\'name\': \'land\', \'uid\': 103}, {\'name\': \'xisi\', \'uid\': 102}] [{\'name\': \'bran\', \'uid\': 101}, {\'name\': \'xisi\', \'uid\': 102}, {\'name\': \'land\', \'uid\': 103}]
正如我们期望中的一样
4.对列表中的多个字典根据某一字段进行分组
注意注意,在进行分组前要首先对数据进行排序处理,排序字段根据实际要求来选择
即将处理的数据:
rows = [ {\'name\': \"bran\", \"uid\": 101, \"class\": 13}, {\'name\': \"xisi\", \"uid\": 101, \"class\": 11}, {\'name\': \"land\", \"uid\": 103, \"class\": 10} ]
期望处理结果:
{ 101: [{\'name\': \'xisi\', \'class\': 11, \'uid\': 101},{\'name\': \'bran\', \'class\': 13, \'uid\': 101}], 103: [{\'name\': \'land\', \'class\': 10, \'uid\': 103}] }
我们按照uid进行分组,这里只是演示,uid一般也不会重复。
这个比较复杂一点,我们一部一步来分解
some = [(\'a\', [1, 2, 3]), (\'b\', [4, 5, 6])] print(dict(some))
结果:
{\'b\': [4, 5, 6], \'a\': [1, 2, 3]}
这里我们的目的是将元组转换成字典,这个很简单,应该都能看懂。接着我们来下一步对待处理数据进行排序:
data_one = sorted(rows, key=itemgetter(\"class\")) print(data_one) data_two = sorted(rows, key=lambda x: (x[\"uid\"], x[\"class\"])) print(data_two)
这里我们提供两种排序方式原理相同,只是样式稍有区别,第一种data_one是直接使用itemgetter,按照我们前面使用过得,直接按照某一字段进行排序,可是有时候我们会有另一种要求:
先按照某一字段排序,当第一字段重复时,再按照另一字段排序。
这时我们就用第二种方法,进行多字段值排序。
排序结果如下:
[{\'name\': \'land\', \'class\': 10, \'uid\': 103}, {\'name\': \'xisi\', \'class\': 11, \'uid\': 101}, {\'name\': \'bran\', \'class\': 13, \'uid\': 101}] [{\'name\': \'xisi\', \'class\': 11, \'uid\': 101}, {\'name\': \'bran\', \'class\': 13, \'uid\': 101}, {\'name\': \'land\', \'class\': 10, \'uid\': 103}]
结果大家慢慢看一下,还是略有差别。
接下来就进行最后一步了,将我们刚才讲的两种方式结合起来使用:
data = dict([(g, list(k)) for g, k in groupby(data_two, key=lambda x: x[\"uid\"])]) print(data)
我们对排序好的数据进行分组,然后生成元组列表,最后将其转换成字典,这里大功告成,我们成功将数据进行分组。
python数据统计的一些小技巧就分享到这,有需要的可以参考学习。
下一篇:Python全局变量用法实例分析