举例详解Python中yield生成器的用法
admin
2023-07-31 02:36:07
0

yield是生成的意思,但是在python中则是作为生成器理解,生成器的用处主要可以迭代,这样简化了很多运算模型(还不是很了解是如何简化的)。
yield是一个表达式,是有返回值的.
当一个函数中含有yield时,它不再是一个普通的函数,而是一个生成器.当该函数被调用时不会自动执行,而是暂停,见第一个例子:
例1:

>>> def mygenerator():
...  print \'start...\'
...  yield 5
... 
>>> mygenerator()   //在此处调用,并没有打印出start...说明存在yield的函数没有被运行,即暂停

>>> mygenerator().next()  //调用next()即可让函数运行.
start...
5
>>> 

如一个函数中出现多个yield则next()会停止在下一个yield前,见例2:
例2:

>>> def mygenerator():
...  print \'start...\'
...  yield 5
... 
>>> mygenerator()   //在此处调用,并没有打印出start...说明存在yield的函数没有被运行,即暂停

>>> mygenerator().next()  //调用next()即可让函数运行.
start...
5
>>> 

为什么yield 5会输出5,yield 23会输出23?
我们猜测可能是因为yield是表达式,存在返回值.
那么这是否可以认为yield 5的返回值一定是5吗?实际上并不是这样,这个与send函数存在一定的关系,这个函数实质上与next()是相似的,区别是send是传递yield表达式的值进去,而next不能传递特定的值,只能传递None进去,因此可以认为g.next()和g.send(None)是相同的。见例3:
例3:

>>> def fun():
...  print \'start...\'
...  m = yield 5
...  print m
...  print \'middle...\'
...  d = yield 12
...  print d
...  print \'end...\'
... 
>>> m = fun()    //创建一个对象
>>> m.next()    //会使函数执行到下一个yield前
start...
5
>>> m.send(\'message\')  //利用send()传递值
message     //send()传递进来的 
middle...
12
>>> m.next()
None      //可见next()返回值为空
end...
Traceback (most recent call last):
 File \"\", line 1, in 
StopIteration

在multiprocess中的使用

python在处理数据的时候,memory-heavy 的数据往往会导致程序没办反运行或者运行期间服务器其他程序效率受到影响。这种情况往往会把数据集合变为通过genertor来遍历。

但同时如我们所知,generoter看似只能被单进程消费,这样效率很低。
generator 可以被pool.map消费。

看一下pool.py的源码。

for i, task in enumerate(taskseq):
  ...
  try:
   put(task)
  except IOError:
   debug(\'could not put task on queue\')
   break

实际是先将generator全部消费掉放到queue中。然后通过map来并行。这样是解决了使用map来并行。

但是依然没有解决占用内存的问题。这里有两步占用内存。

  1.     第一步是全部消费掉的generator。
  2.     第二步并行运算全部data。

解决第一个问题,通过部分消费generator来达到。
解决第二个问题,可以通过imap来达到.

示例代码如下:

import multiprocessing as mp
import itertools
import time


def g():
 for el in xrange(50):
  print el
  yield el

import os

def f(x):
 time.sleep(1)
 print str(os.getpid()) +\" \"+ str(x)
 return x * x

if __name__ == \'__main__\':
 pool = mp.Pool(processes=4)    # start 4 worker processes
 go = g()
 result = []
 N = 11
 while True:
  g2 = pool.imap(f, itertools.islice(go, N))
  if g2:
   for i in g2:
    result.append(i)
    time.sleep(1)
  else:
   break
 print(result)

ps: 使用注意事项。在produce数据的时候,尽量少做操作,应为即使是map也是单线程的来消费数据。所以尽量把操作放到map中作。这样才能更好的利用多进程提高效率。

相关内容

热门资讯

Mobi、epub格式电子书如... 在wps里全局设置里有一个文件关联,打开,勾选电子书文件选项就可以了。
500 行 Python 代码... 语法分析器描述了一个句子的语法结构,用来帮助其他的应用进行推理。自然语言引入了很多意外的歧义,以我们...
定时清理删除C:\Progra... C:\Program Files (x86)下面很多scoped_dir开头的文件夹 写个批处理 定...
scoped_dir32_70... 一台虚拟机C盘总是莫名奇妙的空间用完,导致很多软件没法再运行。经过仔细检查发现是C:\Program...
65536是2的几次方 计算2... 65536是2的16次方:65536=2⁶ 65536是256的2次方:65536=256 6553...
小程序支付时提示:appid和... [Q]小程序支付时提示:appid和mch_id不匹配 [A]小程序和微信支付没有进行关联,访问“小...
pycparser 是一个用... `pycparser` 是一个用 Python 编写的 C 语言解析器。它可以用来解析 C 代码并构...
微信小程序使用slider实现... 众所周知哈,微信小程序里面的音频播放是没有进度条的,但最近有个项目呢,客户要求音频要有进度条控制,所...
Apache Doris 2.... 亲爱的社区小伙伴们,我们很高兴地向大家宣布,Apache Doris 2.0.0 版本已于...
python清除字符串里非数字... 本文实例讲述了python清除字符串里非数字字符的方法。分享给大家供大家参考。具体如下: impor...