相信用python的同学不少,本人也一直对python情有独钟,毫无疑问python作为一门解释性动态语言没有那些编译型语言高效,但是python简洁、易读以及可扩展性等特性使得它大受青睐。
工作中很多同事都在用python,但往往很少有人关注它的性能和惯用法,一般都是现学现用,毕竟python不是我们的主要语言,我们一般只是使用它来做一些系统管理的工作。但是我们为什么不做的更好呢?python zen中有这样一句:There should be one– and preferably only one –obvious way to do it. Although that way may not be obvious at first unless you\’re Dutch. 大意就是python鼓励使用一种最优的方法去完成一件事,这也是和ruby等的一个差异。所以一种好的python编写习惯个人认为很重要,本文就重点从性能角度出发对python的一些惯用法做一个简单总结,希望对大家有用~
提到性能,最容易想到的是降低复杂度,一般可以通过测量代码回路复杂度(cyclomatic complexitly)和Landau符号(大O)来分析, 比如dict查找是O(1),而列表的查找却是O(n),显然数据的存储方式选择会直接影响算法的复杂度。
一、数据结构的选择
1. 在列表中查找:
对于已经排序的列表考虑用bisect模块来实现查找元素,该模块将使用二分查找实现
def find(seq, el) : pos = bisect(seq, el) if pos == 0 or ( pos == len(seq) and seq[-1] != el ) : return -1 return pos - 1
而快速插入一个元素可以用:
bisect.insort(list, element)
这样就插入元素并且不需要再次调用 sort() 来保序,要知道对于长list代价很高.
2. set代替列表:
比如要对一个list进行去重,最容易想到的实现:
seq = [\'a\', \'a\', \'b\'] res = [] for i in seq: if i not in res: res.append(i)
显然上面的实现的复杂度是O(n2),若改成:
seq = [\'a\', \'a\', \'b\'] res = set(seq)
复杂度马上降为O(n),当然这里假定set可以满足后续使用。
另外,set的union,intersection,difference等操作要比列表的迭代快的多,因此如果涉及到求列表交集,并集或者差集等问题可以转换为set来进行,平时使用的时候多注意下,特别当列表比较大的时候,性能的影响就更大。
3. 使用python的collections模块替代内建容器类型:
collections有三种类型:
deque:增强功能的类似list类型
defaultdict:类似dict类型
namedtuple:类似tuple类型
列表是基于数组实现的,而deque是基于双链表的,所以后者在中间or前面插入元素,或者删除元素都会快很多。
defaultdict为新的键值添加了一个默认的工厂,可以避免编写一个额外的测试来初始化映射条目,比dict.setdefault更高效,引用python文档的一个例子:
#使用profile stats工具进行性能分析 >>> from pbp.scripts.profiler import profile, stats >>> s = [(\'yellow\', 1), (\'blue\', 2), (\'yellow\', 3), ... (\'blue\', 4), (\'red\', 1)] >>> @profile(\'defaultdict\') ... def faster(): ... d = defaultdict(list) ... for k, v in s: ... d[k].append(v) ... >>> @profile(\'dict\') ... def slower(): ... d = {} ... for k, v in s: ... d.setdefault(k, []).append(v) ... >>> slower(); faster() Optimization: Solutions [ 306 ] >>> stats[\'dict\'] {\'stones\': 16.587882671716077, \'memory\': 396, \'time\': 0.35166311264038086} >>> stats[\'defaultdict\'] {\'stones\': 6.5733464259021686, \'memory\': 552, \'time\': 0.13935494422912598}
可见性能提升了快3倍。defaultdict用一个list工厂作为参数,同样可用于内建类型,比如long等。
除了实现的算法、架构之外,python提倡简单、优雅。所以正确的语法实践又很有必要,这样才会写出优雅易于阅读的代码。
二、语法最佳实践
字符串操作:优于python字符串对象是不可改变的,因此对任何字符串的操作如拼接,修改等都将产生一个新的字符串对象,而不是基于原字符串,因此这种持续的 copy会在一定程度上影响Python的性能:
(1)用join代替 \’+\’ 操作符,后者有copy开销;
(2)同时当对字符串可以使用正则表达式或者内置函数来处理的时候,选择内置函数。如str.isalpha(),str.isdigit(),str.startswith((‘x\’, ‘yz\’)),str.endswith((‘x\’, ‘yz\’))
(3)字符格式化操作优于直接串联读取:
str = \”%s%s%s%s\” % (a, b, c, d) # efficient
str = \”\” + a + b + c + d + \”\” # slow
2. 善用list comprehension(列表解析) & generator(生成器) & decorators(装饰器),熟悉itertools等模块:
(1) 列表解析,我觉得是python2中最让我印象深刻的特性,举例1:
>>> # the following is not so Pythonic >>> numbers = range(10) >>> i = 0 >>> evens = [] >>> while i < len(numbers): >>> if i %2 == 0: evens.append(i) >>> i += 1 >>> [0, 2, 4, 6, 8] >>> # the good way to iterate a range, elegant and efficient >>> evens = [ i for i in range(10) if i%2 == 0] >>> [0, 2, 4, 6, 8]
举例2:
def _treament(pos, element): return \'%d: %s\' % (pos, element) f = open(\'test.txt\', \'r\') if __name__ == \'__main__\': #list comps 1 print sum(len(word) for line in f for word in line.split()) #list comps 2 print [(x + 1, y + 1) for x in range(3) for y in range(4)] #func print filter(lambda x: x % 2 == 0, range(10)) #list comps3 print [i for i in range(10) if i % 2 == 0] #list comps4 pythonic print [_treament(i, el) for i, el in enumerate(range(10))] output: 24 [(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4)] [0, 2, 4, 6, 8] [0, 2, 4, 6, 8] [\'0: 0\', \'1: 1\', \'2: 2\', \'3: 3\', \'4: 4\', \'5: 5\', \'6: 6\', \'7: 7\', \'8: 8\', \'9: 9\']
没错,就是这么优雅简单。
(2) 生成器表达式在python2.2引入,它使用\’lazy evaluation\’思想,因此在使用内存上更有效。引用python核心编程中计算文件中最长的行的例子:
f = open(\'/etc/motd, \'r\') longest = max(len(x.strip()) for x in f) f.close() return longest
这种实现简洁而且不需要把文件文件所有行读入内存。
(3) python在2.4引入装饰器,又是一个让人兴奋的特性,简单来说它使得函数和方法封装(接收一个函数并返回增强版本的函数)更容易阅读、理解。\’@\’符号是装饰器语法,你可以装饰一个函数,记住调用结果供后续使用,这种技术被称为memoization的,下面是用装饰器完成一个cache功能:
import time import hashlib import pickle from itertools import chain cache = {} def is_obsolete(entry, duration): return time.time() - entry[\'time\'] > duration def compute_key(function, args, kw): #序列化/反序列化一个对象,这里是用pickle模块对函数和参数对象进行序列化为一个hash值 key = pickle.dumps((function.func_name, args, kw)) #hashlib是一个提供MD5和sh1的一个库,该结果保存在一个全局字典中 return hashlib.sha1(key).hexdigest() def memoize(duration=10): def _memoize(function): def __memoize(*args, **kw): key = compute_key(function, args, kw) # do we have it already if (key in cache and not is_obsolete(cache[key], duration)): print \'we got a winner\' return cache[key][\'value\'] # computing result = function(*args, **kw) # storing the result cache[key] = {\'value\': result,- \'time\': time.time()} return result return __memoize return _memoize @memoize() def very_very_complex_stuff(a, b, c): return a + b + c print very_very_complex_stuff(2, 2, 2) print very_very_complex_stuff(2, 2, 2) @memoize(1) def very_very_complex_stuff(a, b): return a + b print very_very_complex_stuff(2, 2) time.sleep(2) print very_very_complex_stuff(2, 2)
运行结果:
6 we got a winner 6 4 4
装饰器在很多场景用到,比如参数检查、锁同步、单元测试框架等,有兴趣的人可以自己进一步学习。
3. 善用python强大的自省能力(属性和描述符):自从使用了python,真的是惊讶原来自省可以做的这么强大简单,关于这个话题,限于内容比较多,这里就不赘述,后续有时间单独做一个总结,学习python必须对其自省好好理解。
三、 编码小技巧
1、在python3之前版本使用xrange代替range,因为range()直接返回完整的元素列表而xrange()在序列中每次调用只产生一个整数元素,开销小。(在python3中xrange不再存在,里面range提供一个可以 遍历任意长度的范围的iterator)
2、if done is not None比语句if done != None更快;
3、尽量使用\”in\”操作符,简洁而快速: for i in seq: print i
4、\’x < y < z\’代替\’x < y and y < z\’;
5、while 1要比while True更快, 因为前者是单步运算,后者还需要计算;
6、尽量使用build-in的函数,因为这些函数往往很高效,比如add(a,b)要优于a+b;
7、在耗时较多的循环中,可以把函数的调用改为内联的方式,内循环应该保持简洁。
8、使用多重赋值来swap元素:
x, y = y, x # elegant and efficient
而不是:
temp = x
x = y
y = temp
9. 三元操作符(python2.5后):V1 if X else V2,避免使用(X and V1) or V2,因为后者当V1=\”\”时,就会有问题。
10. python之switch case实现:因为switch case语法完全可用if else代替,所以python就没 有switch case语法,但是我们可以用dictionary或lamda实现:
switch case结构:
switch (var) { case v1: func1(); case v2: func2(); ... case vN: funcN(); default: default_func(); } dictionary实现: values = { v1: func1, v2: func2, ... vN: funcN, } values.get(var, default_func)() lambda实现: { \'1\': lambda: func1, \'2\': lambda: func2, \'3\': lambda: func3 }[value]()
用try…catch来实现带Default的情况,个人推荐使用dict的实现方法。
这里只总结了一部分python的实践方法,希望这些建议可以帮助到每一位使用python的同学,优化性能不是重点,高效解决问题,让自己写的代码更加易于维护!