实例详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(三)
admin
2023-07-31 01:42:44
0

这是本系列的最后一篇,主要是select_related() 和 prefetch_related() 的最佳实践。

第一篇在这里 讲例子和select_related()

第二篇在这里 讲prefetch_related()

 

4. 一些实例

选择哪个函数

如果我们想要获得所有家乡是湖北的人,最无脑的做法是先获得湖北省,再获得湖北的所有城市,最后获得故乡是这个城市的人。就像这样:

12345 >>> hb = Province.objects.get(name__iexact=u\”湖北省\”)>>> people = []>>> for city in hb.city_set.all():...   people.extend(city.birth.all())...

显然这不是一个明智的选择,因为这样做会导致1+(湖北省城市数)次SQL查询。反正是个反例,导致的查询和获得掉结果就不列出来了。

prefetch_related() 或许是一个好的解决方法,让我们来看看。

12345 >>> hb = Province.objects.prefetch_related(\”city_set__birth\”).objects.get(name__iexact=u\”湖北省\”)>>> people = []>>> for city in hb.city_set.all():...   people.extend(city.birth.all())...

因为是一个深度为2的prefetch,所以会导致3次SQL查询:

123456789101112 SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`name` LIKE \’湖北省\’ SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` WHERE `QSOptimize_city`.`province_id` IN (1); SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` FROM `QSOptimize_person` WHERE `QSOptimize_person`.`hometown_id` IN (1, 3);

嗯…看上去不错,但是3次查询么?倒过来查询可能会更简单?

1 >>> people = list(Person.objects.select_related(\”hometown__province\”).filter(hometown__province__name__iexact=u\”湖北省\”))

1234567 SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`, `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name`FROM `QSOptimize_person` INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`hometown_id` = `QSOptimize_city`.`id`) INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`) WHERE `QSOptimize_province`.`name` LIKE \’湖北省\’;

12345678 +—-+———–+———-+————-+———–+—-+——–+————-+—-+——–+| id | firstname | lastname | hometown_id | living_id | id | name   | province_id | id | name   |+—-+———–+———-+————-+———–+—-+——–+————-+—-+——–+|  1 |         |        |           3 |         1 |  3 | 十堰市 |           1 |  1\”>           3 |         1 |  3 | 十堰市 |           1 |  1p>第二篇在这里 讲prefetch_related()

 

4. 一些实例

选择哪个函数

如果我们想要获得所有家乡是湖北的人,最无脑的做法是先获得湖北省,再获得湖北的所有城市,最后获得故乡是这个城市的人。就像这样:

12345 >>> hb = Province.objects.get(name__iexact=u\”湖北省\”)>>> people = []>>> for city in hb.city_set.all():...   people.extend(city.birth.all())...

显然这不是一个明智的选择,因为这样做会导致1+(湖北省城市数)次SQL查询。反正是个反例,导致的查询和获得掉结果就不列出来了。

prefetch_related() 或许是一个好的解决方法,让我们来看看。

12345 >>> hb = Province.objects.prefetch_related(\”city_set__birth\”).objects.get(name__iexact=u\”湖北省\”)>>> people = []>>> for city in hb.city_set.all():...   people.extend(city.birth.all())...

因为是一个深度为2的prefetch,所以会导致3次SQL查询:

123456789101112 SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`name` LIKE \’湖北省\’ SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` WHERE `QSOptimize_city`.`province_id` IN (1); SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` FROM `QSOptimize_person` WHERE `QSOptimize_person`.`hometown_id` IN (1, 3);

嗯…看上去不错,但是3次查询么?倒过来查询可能会更简单?

1 >>> people = list(Person.objects.select_related(\”hometown__province\”).filter(hometown__province__name__iexact=u\”湖北省\”))

1234567 SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`, `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name`FROM `QSOptimize_person` INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`hometown_id` = `QSOptimize_city`.`id`) INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`) WHERE `QSOptimize_province`.`name` LIKE \’湖北省\’;

12345678 +—-+———–+———-+————-+———–+—-+——–+————-+—-+——–+| id | firstname | lastname | hometown_id | living_id | id | name   | province_id | id | name   |+—-+———–+———-+————-+———–+—-+——–+————-+—-+——–+|  1 |         |        |           3 |         1 |  3 | 十堰市

相关内容

热门资讯

500 行 Python 代码... 语法分析器描述了一个句子的语法结构,用来帮助其他的应用进行推理。自然语言引入了很多意外的歧义,以我们...
定时清理删除C:\Progra... C:\Program Files (x86)下面很多scoped_dir开头的文件夹 写个批处理 定...
65536是2的几次方 计算2... 65536是2的16次方:65536=2⁶ 65536是256的2次方:65536=256 6553...
Mobi、epub格式电子书如... 在wps里全局设置里有一个文件关联,打开,勾选电子书文件选项就可以了。
scoped_dir32_70... 一台虚拟机C盘总是莫名奇妙的空间用完,导致很多软件没法再运行。经过仔细检查发现是C:\Program...
pycparser 是一个用... `pycparser` 是一个用 Python 编写的 C 语言解析器。它可以用来解析 C 代码并构...
小程序支付时提示:appid和... [Q]小程序支付时提示:appid和mch_id不匹配 [A]小程序和微信支付没有进行关联,访问“小...
微信小程序使用slider实现... 众所周知哈,微信小程序里面的音频播放是没有进度条的,但最近有个项目呢,客户要求音频要有进度条控制,所...
python绘图库Matplo... 本文简单介绍了Python绘图库Matplotlib的安装,简介如下: matplotlib是pyt...
Prometheus+Graf... 一,Prometheus概述 1,什么是Prometheus?Prometheus是最初在Sound...