Python map, reduce, filter和sorted

map

1 map(funcname, list)



python的map 函数使得函数能直接以list的每个元素作为参数传递到funcname中, 并返回响应的新的list
如下:

123 def sq(x):    return x*x  #求x的平方map(sq, [1,3, 5,7,9]) #[1, 9, 25, 49, 81]



在需要对list中的每个元素做转换的时候, 会很方便

比如,把list中的每个int 转换成str

1 map(str, [23,43,4545,324]) #[\’23\’, \’43\’, \’4545\’, \’324\’]

当然, 第二个参数是list, 也可以是tuple 或者是set类list结构的, dict 是不行的,不过返回的结果都是list

12 map(sq, (1,3, 5,7,9)) # tuple [1, 9, 25, 49, 81]map(sq, set([1,3, 5,3,7,9])) # set [1, 9, 81, 25, 49]

这里顺便说一下, dict的结构是用{} 表示的,如

1 {\”name\”: \”Yi_Zhi_Yu\”, \”age\”:25}

是直观的key-value形式, 那么如果{}中的是一个类list的结构呢, 如:

1 {\”Yi_Zhi_Yu\”, 25}

其实, 这就是set的最终返回形式, 等价于:

1 set([\”Yi_Zhi_Yu\”, 25])# 你会看到最终的输出形式是{25, \’Yi_Zhi_Yu\’}

那么, 自然{}有重复值得时候也会去重

1    {1,3, 5, 3, 7, 9}  #{1, 3, 5, 7, 9}

reduce

1 reduce(funcname, list)

与map相比 , reduce类似于一个聚合类的应用方法, 把list中的参数, 依次传递给funcname, 每次funcname的参数都是上个funcname 执行结果和下一个list中的元素, 所以, funcname 的 参数必须是两个. 从执行过程看, 有点像递归

例如: 求range(1, 101)(不包括101)的和,

123 def c_sum(x, y):    return x + y;reduce(c_sum, range(1,101)) #5050

filter

1 filter(funcname, list)

执行过程依次将list中的元素传递到funcname函数中, 根据funcname返回的True或False 保留或丢弃元素

例: 返回某个list中的所有int数据

1234567 def is_int(x):    if isinstance(x, (int)):        return True    else:        return False  filter(is_int, [\”Yi\”,2, \”3\”, 4]) #[2, 4]

sorted

1 sorted( list, [comp_func])

排序方法, 第二个是可选参数, 根据可选参数返回的值, 对结果进行排序, comp_func 接受两个参数(x, y), 最终返回的结果应该是-1.0,1, 如果返回的是-1, 表示x , 0表示x=y, 1表示x>y, 所以, 实际的排序可以自定义
默认是正序排序:

1 sorted([3,4, 12, 5, 9, 1])  #[1, 3, 4, 5, 9, 12]

如果是需要倒序排列, 自定义方法:

12345678 def m_order(x, y):    if(x > y):        return 1    elif(x == y):        return 0    else:        return 1sorted([3,4, 12, 5, 9, 1], m_order)  #[12, 9, 5, 4, 3, 1]

PS: 以上为学习笔记, 如有错误, 还望指正
参考:廖雪峰Python教程