用python也差不多一年多了,python应用最多的场景还是web快速开发、爬虫、自动化运维:写过简单网站、写过自动发帖脚本、写过收发邮件脚本、写过简单验证码识别脚本。
爬虫在开发过程中也有很多复用的过程,这里总结一下,以后也能省些事情。
| 1234 | import urllib2url \”http://www.baidu.com\”respons = urllib2.urlopen(url)print response.read() |
| 123456789 | import urllibimport urllib2 url = \”http://abcde.com\”form = {\’name\’:\’abc\’,\’password\’:\’1234\’}form_data = urllib.urlencode(form)request = urllib2.Request(url,form_data)response = urllib2.urlopen(request)print response.read() |
在开发爬虫过程中经常会遇到IP被封掉的情况,这时就需要用到代理IP;
在urllib2包中有ProxyHandler类,通过此类可以设置代理访问网页,如下代码片段:
| 1234567 | import urllib2 proxy = urllib2.ProxyHandler({\’http\’: \’127.0.0.1:8087\’})opener = urllib2.build_opener(proxy)urllib2.install_opener(opener)response = urllib2.urlopen(\’http://www.baidu.com\’)print response.read() |
cookies是某些网站为了辨别用户身份、进行session跟踪而储存在用户本地终端上的数据(通常经过加密),python提供了cookielib模块用于处理cookies,cookielib模块的主要作用是提供可存储cookie的对象,以便于与urllib2模块配合使用来访问Internet资源.
代码片段:
| 123456 | import urllib2, cookielib cookie_support= urllib2.HTTPCookieProcessor(cookielib.CookieJar())opener = urllib2.build_opener(cookie_support)urllib2.install_opener(opener)content = urllib2.urlopen(\’http://XXXX\’).read() |
关键在于CookieJar(),它用于管理HTTP cookie值、存储HTTP请求生成的cookie、向传出的HTTP请求添加cookie的对象。整个cookie都存储在内存中,对CookieJar实例进行垃圾回收后cookie也将丢失,所有过程都不需要单独去操作。
手动添加cookie
| 12 | cookie = \”PHPSESSID=91rurfqm2329bopnosfu4fvmu7; kmsign=55d2c12c9b1e3; KMUID=b6Ejc1XSwPq9o756AxnBAg=\”request.add_header(\”Cookie\”, cookie) |
某些网站反感爬虫的到访,于是对爬虫一律拒绝请求。所以用urllib2直接访问网站经常会出现HTTP Error 403: Forbidden的情况
对有些 header 要特别留意,Server 端会针对这些 header 做检查
1.User-Agent 有些 Server 或 Proxy 会检查该值,用来判断是否是浏览器发起的 Request
2.Content-Type 在使用 REST 接口时,Server 会检查该值,用来确定 HTTP Body 中的内容该怎样解析。
这时可以通过修改http包中的header来实现,代码片段如下:
| 12345678910 | import urllib2 headers = { \’User-Agent\’:\’Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.6) Gecko/20091201 Firefox/3.5.6\’}request = urllib2.Request( url = \’http://my.oschina.net/jhao104/blog?catalog=3463517\’, headers = headers)print urllib2.urlopen(request).read() |
对于页面解析最强大的当然是正则表达式,这个对于不同网站不同的使用者都不一样,就不用过多的说明,附两个比较好的网址:
正则表达式入门:http://www.cnblogs.com/huxi/archive/2010/07/04/1771073.html
正则表达式在线测试:http://tool.oschina.net/regex/
其次就是解析库了,常用的有两个lxml和BeautifulSoup,对于这两个的使用介绍两个比较好的网站:
lxml:http://my.oschina.net/jhao104/blog/639448
BeautifulSoup:http://cuiqingcai.com/1319.html
对于这两个库,我的评价是,都是HTML/XML的处理库,Beautifulsoup纯python实现,效率低,但是功能实用,比如能用通过结果搜索获得某个HTML节点的源码;lxmlC语言编码,高效,支持Xpath
对于一些简单的验证码,可以进行简单的识别。本人也只进行过一些简单的验证码识别。但是有些反人类的验证码,比如12306,可以通过打码平台进行人工打码,当然这是要付费的。
有没有遇到过某些网页,不论怎么转码都是一团乱码。哈哈,那说明你还不知道许多web服务具有发送压缩数据的能力,这可以将网络线路上传输的大量数据消减 60% 以上。这尤其适用于 XML web 服务,因为 XML 数据 的压缩率可以很高。
但是一般服务器不会为你发送压缩数据,除非你告诉服务器你可以处理压缩数据。
于是需要这样修改代码:
| 12345 | import urllib2, httplibrequest = urllib2.Request(\’http://xxxx.com\’)request.add_header(\’Accept-encoding\’, \’gzip\’) 1opener = urllib2.build_opener()f = opener.open(request) |
这是关键:创建Request对象,添加一个 Accept-encoding 头信息告诉服务器你能接受 gzip 压缩数据
然后就是解压缩数据:
| 1234567 | import StringIOimport gzip compresseddata = f.read() compressedstream = StringIO.StringIO(compresseddata)gzipper = gzip.GzipFile(fileobj=compressedstream) print gzipper.read() |
单线程太慢的话,就需要多线程了,这里给个简单的线程池模板 这个程序只是简单地打印了1-10,但是可以看出是并发的。
虽然说python的多线程很鸡肋,但是对于爬虫这种网络频繁型,还是能一定程度提高效率的。
| 1234567891011121314151617181920212223242526272829 | from threading import Threadfrom Queue import Queuefrom time import sleep# q是任务队列#NUM是并发线程总数#JOBS是有多少任务q = Queue()NUM = 2JOBS = 10#具体的处理函数,负责处理单个任务def do_somthing_using(arguments): print arguments#这个是工作进程,负责不断从队列取数据并处理def working(): while True: arguments = q.get() do_somthing_using(arguments) sleep(1) q.task_done()#fork NUM个线程等待队列for i in range(NUM): t = Thread(target=working) t.setDaemon(True) t.start()#把JOBS排入队列for i in range(JOBS): q.put(i)#等待所有JOBS完成q.join() |