Python 迭代器与生成器
admin
2023-07-31 00:39:43
0

项目地址:https://git.io/pytips

迭代器与生成器

迭代器(iterator)与生成器(generator)是 Python 中比较常用又很容易混淆的两个概念,今天就把它们梳理一遍,并举一些常用的例子。

for 语句与可迭代对象(iterable object):

12 for i in [1, 2, 3]:    print(i)

123 123

123 obj = {\”a\”: 123, \”b\”: 456}for k in obj:    print(k)

12 ba

这些可以用在 for 语句进行循环的对象就是可迭代对象。除了内置的数据类型(列表、元组、字符串、字典等)可以通过 for 语句进行迭代,我们也可以自己创建一个容器,包含一系列元素,可以通过 for 语句依次循环取出每一个元素,这种容器就是迭代器(iterator)。除了用 for 遍历,迭代器还可以通过 next() 方法逐一读取下一个元素。要创建一个迭代器有3种方法,其中前两种分别是:

  1. 为容器对象添加 __iter__()__next__() 方法(Python 2.7 中是 next());__iter__() 返回迭代器对象本身 self__next__() 则返回每次调用 next() 或迭代时的元素;
  2. 内置函数 iter() 将可迭代对象转化为迭代器

    123456789101112131415161718192021222324252627 # iter(IterableObject)ita = iter([1, 2, 3])print(type(ita)) print(next(ita))print(next(ita))print(next(ita)) # Create iterator Objectclass Container:    def __init__(self, start = 0, end = 0):        self.start = start        self.end = end    def __iter__(self):        print(\”[LOG] I made this iterator!\”)        return self    def __next__(self):        print(\”[LOG] Calling __next__ method!\”)        if self.start < self.end:            i = self.start            self.start += 1            return i        else:            raise StopIteration()c = Container(0, 5)for i in c:    print(i)



     

123456789101112131415 123[LOG] I made this iterator![LOG] Calling __next__ method!0[LOG] Calling __next__ method!1[LOG] Calling __next__ method!2[LOG] Calling __next__ method!3[LOG] Calling __next__ method!4[LOG] Calling __next__ method!

创建迭代器对象的好处是当序列长度很大时,可以减少内存消耗,因为每次只需要记录一个值即刻(经常看到人们介绍 Python 2.7 的 range 函数时,建议当长度太大时用 xrange 更快,在 Python 3.5 中已经去除了 xrange 只有一个类似迭代器一样的 range)。

生成器

前面说到创建迭代器有3种方法,其中第三种就是生成器(generator)。生成器通过 yield 语句快速生成迭代器,省略了复杂的 __iter__() & __next__() 方式:

12345678910 def container(start, end):    while start < end:        yield start        start += 1c = container(0, 5)print(type(c))print(next(c))next(c)for i in c:    print(i)

12345 <class \’generator\’>0234

简单来说,yield 语句可以让普通函数变成一个生成器,并且相应的 __next__() 方法返回的是 yield 后面的值。一种更直观的解释是:程序执行到 yield 会返回值并暂停,再次调用 next() 时会从上次暂停的地方继续开始执行:

1234567 def gen():    yield 5    yield \”Hello\”    yield \”World\”    yield 4for i in gen():    print(i)

1234 5HelloWorld4

Python 3.5 (准确地说应该是 3.3 以后)中为生成器添加了更多特性,包括 yield from 以及在暂停的地方传值回生成器的 send()等,为了保持简洁这里就不深入介绍了,有兴趣可以阅读官方文档说明以及参考链接2。

参考

  1. Iterators & Generators
  2. How the heck does async/await work in Python 3.5?
  3. Python’s yield from


相关内容

热门资讯

500 行 Python 代码... 语法分析器描述了一个句子的语法结构,用来帮助其他的应用进行推理。自然语言引入了很多意外的歧义,以我们...
定时清理删除C:\Progra... C:\Program Files (x86)下面很多scoped_dir开头的文件夹 写个批处理 定...
65536是2的几次方 计算2... 65536是2的16次方:65536=2⁶ 65536是256的2次方:65536=256 6553...
Mobi、epub格式电子书如... 在wps里全局设置里有一个文件关联,打开,勾选电子书文件选项就可以了。
scoped_dir32_70... 一台虚拟机C盘总是莫名奇妙的空间用完,导致很多软件没法再运行。经过仔细检查发现是C:\Program...
pycparser 是一个用... `pycparser` 是一个用 Python 编写的 C 语言解析器。它可以用来解析 C 代码并构...
小程序支付时提示:appid和... [Q]小程序支付时提示:appid和mch_id不匹配 [A]小程序和微信支付没有进行关联,访问“小...
微信小程序使用slider实现... 众所周知哈,微信小程序里面的音频播放是没有进度条的,但最近有个项目呢,客户要求音频要有进度条控制,所...
python绘图库Matplo... 本文简单介绍了Python绘图库Matplotlib的安装,简介如下: matplotlib是pyt...
Prometheus+Graf... 一,Prometheus概述 1,什么是Prometheus?Prometheus是最初在Sound...