在 用户 —— 物品(user – item)的数据关系下很容易收集到一些偏好信息(preference),比如评分。利用这些分散的偏好信息,基于其背后可能存在的关联性,来为用户推荐物品的方法,便是协同过滤,或称协作型过滤(collaborative filtering)。 这种过滤算法的有效性基础在于:
不同环境下这两种理论的有效性也不同,应用时需做相应调整。如豆瓣上的文艺作品,用户对其的偏好程度与用户自身的品位关联性较强;而对于电子商务网站来说,商品之间的内在联系对用户的购买行为影响更为显著。当用在推荐上,这两种方向也被称为基于用户的和基于物品的。本文内容为基于用户的。
本文主要内容为基于用户偏好的相似性进行物品推荐,使用的数据集为 GroupLens Research 采集的一组从 20 世纪 90 年代末到 21 世纪初由 MovieLens 用户提供的电影评分数据。数据中包含了约 6000 名用户对约 4000 部电影的 100万条评分,五分制。数据包可以从网上下载到,里面包含了三个数据表——users、movies、ratings。因为本文的主题是基于用户偏好的,所以只使用 ratings 这一个文件。另两个文件里分别包含用户和电影的元信息。 本文使用的数据分析包为 pandas,环境为 IPython,因此其实还默认携带了 Numpy 和 matplotlib。下面代码中的提示符看起来不是 IPython 环境是因为 Idle 的格式发在博客上更好看一些。
首先将评分数据从 ratings.dat 中读出到一个 DataFrame 里:
1234567891011 | >>> import pandas as pd>>> from pandas import Series,DataFrame>>> rnames = [\’user_id\’,\’movie_id\’,\’rating\’,\’timestamp\’]>>> ratings = pd.read_table(r\’ratings.dat\’,sep=\’::\’,header=None,names=rnames)>>> ratings[:3] user_id movie_id rating timestamp0 1 1193 5 9783007601 1 661 3 9783021092 1 914 3 978301968 [3 rows x 4 columns] |
ratings 表中对我们有用的仅是 user_id、movie_id 和 rating 这三列,因此我们将这三列取出,放到一个以 user 为行,movie 为列,rating 为值的表 data 里面。(其实将 user 与 movie 的行列关系对调是更加科学的方法,但因为重跑一遍太麻烦了,这里就没改。)
123456789 | >>> data = ratings.pivot(index=\’user_id\’,columns=\’movie_id\’,values=\’rating\’)>>> data[:5]movie_id 1 2 3 4 5 6 user_id 1 5 NaN NaN NaN NaN NaN ...2 NaN NaN NaN NaN NaN NaN ...3 NaN NaN NaN NaN NaN NaN ...4 NaN NaN NaN NaN NaN NaN ...5 NaN NaN NaN NaN NaN 2 ... |
可以看到这个表相当得稀疏,填充率大约只有 5%,接下来要实现推荐的第一步是计算 user 之间的相关系数,DataFrame 对象有一个很亲切的 .corr(method=\'pearson\', min_periods=1)
方法,可以对所有列互相计算相关系数。method 默认为皮尔逊相关系数,这个 ok,我们就用这个。问题仅在于那个 min_periods 参数,这个参数的作用是设定计算相关系数时的最小样本量,低于此值的一对列将不进行运算。这个值的取舍关系到相关系数计算的准确性,因此有必要先来确定一下这个参数。
1 | 相关系数是用于评价两个变量间线性关系的一个值,取值范围为 [–1, 1],–1代表负相关,0 代表不相关,1 代表正相关。其中 0~0.1 一般被认为是弱相关,0.1~0.4 为相关,0.4~1 为强相关。 |
测定这样一个参数的基本方法为统计在 min_periods 取不同值时,相关系数的标准差大小,越小越好;但同时又要考虑到,我们的样本空间十分稀疏,min_periods 定得太高会导致出来的结果集太小,所以只能选定一个折中的值。 这里我们测定评分系统标准差的方法为:在 data 中挑选一对重叠评分最多的用户,用他们之间的相关系数的标准差去对整体标准差做点估计。在此前提下对这一对用户在不同样本量下的相关系数进行统计,观察其标准差变化。 首先,要找出重叠评分最多的一对用户。我们新建一个以 user 为行列的方阵 foo,然后挨个填充不同用户间重叠评分的个数:
1234 | >>> foo = DataFrame(np.empty((len(data.index),len(data.index)),dtype=int),index=data.index,columns=data.index)>>> for i in foo.index: for j in foo.columns: foo.ix[i,j] = data.ix[i][data.ix[j].notnull()].dropna().count() |
这段代码特别费时间,因为最后一行语句要执行 4000*4000 = 1600万遍;(其中有一半是重复运算,因为 foo 这个方阵是对称的)还有一个原因是 Python 的 GIL,使得其只能使用一个 CPU 线程。我在它执行了一个小时后,忍不住去测试了一下总时间,发现要三个多小时后就果断 Ctrl + C 了,在算了一小半的 foo 中,我找到的最大值所对应的行列分别为 424 和 4169,这两位用户之间的重叠评分数为 998:
12345678910111213141516 | >>> for i in foo.index: foo.ix[i,i]=0#先把对角线的值设为 0 这种过滤算法的有效性基础在于:
不同环境下这两种理论的有效性也不同,应用时需做相应调整。如豆瓣上的文艺作品,用户对其的偏好程度与用户自身的品位关联性较强;而对于电子商务网站来说,商品之间的内在联系对用户的购买行为影响更为显著。当用在推荐上,这两种方向也被称为基于用户的和基于物品的。本文内容为基于用户的。 影评推荐实例本文主要内容为基于用户偏好的相似性进行物品推荐,使用的数据集为 GroupLens Research 采集的一组从 20 世纪 90 年代末到 21 世纪初由 MovieLens 用户提供的电影评分数据。数据中包含了约 6000 名用户对约 4000 部电影的 100万条评分,五分制。数据包可以从网上下载到,里面包含了三个数据表——users、movies、ratings。因为本文的主题是基于用户偏好的,所以只使用 ratings 这一个文件。另两个文件里分别包含用户和电影的元信息。 本文使用的数据分析包为 pandas,环境为 IPython,因此其实还默认携带了 Numpy 和 matplotlib。下面代码中的提示符看起来不是 IPython 环境是因为 Idle 的格式发在博客上更好看一些。 数据规整首先将评分数据从 ratings.dat 中读出到一个 DataFrame 里:
ratings 表中对我们有用的仅是 user_id、movie_id 和 rating 这三列,因此我们将这三列取出,放到一个以 user 为行,movie 为列,rating 为值的表 data 里面。(其实将 user 与 movie 的行列关系对调是更加科学的方法,但因为重跑一遍太麻烦了,这里就没改。)
可以看到这个表相当得稀疏,填充率大约只有 5%,接下来要实现推荐的第一步是计算 user 之间的相关系数,DataFrame 对象有一个很亲切的
min_periods 参数测定测定这样一个参数的基本方法为统计在 min_periods 取不同值时,相关系数的标准差大小,越小越好;但同时又要考虑到,我们的样本空间十分稀疏,min_periods 定得太高会导致出来的结果集太小,所以只能选定一个折中的值。 这里我们测定评分系统标准差的方法为:在 data 中挑选一对重叠评分最多的用户,用他们之间的相关系数的标准差去对整体标准差做点估计。在此前提下对这一对用户在不同样本量下的相关系数进行统计,观察其标准差变化。 首先,要找出重叠评分最多的一对用户。我们新建一个以 user 为行列的方阵 foo,然后挨个填充不同用户间重叠评分的个数:
这段代码特别费时间,因为最后一行语句要执行 4000*4000 = 1600万遍;(其中有一半是重复运算,因为 foo 这个方阵是对称的)还有一个原因是 Python 的 GIL,使得其只能使用一个 CPU 线程。我在它执行了一个小时后,忍不住去测试了一下总时间,发现要三个多小时后就果断 Ctrl + C 了,在算了一小半的 foo 中,我找到的最大值所对应的行列分别为 424 和 4169,这两位用户之间的重叠评分数为 998:
|