Python主要通过标准库中的threading包来实现多线程。在当今网络时代,每个服务器都会接收到大量的请求。服务器可以利用多线程的方式来处理这些请求,以提高对网络端口的读写效率。Python是一种网络服务器的后台工作语言 (比如豆瓣网),所以多线程也就很自然被Python语言支持。
(关于多线程的原理和C实现方法,请参考我之前写的Linux多线程与同步,要了解race condition, mutex和condition variable的概念)
我们使用Python来实现Linux多线程与同步文中的售票程序。我们使用mutex (也就是Python中的Lock类对象) 来实现线程的同步:
1234567891011121314151617181920212223242526272829303132333435 | # A program to simulate selling tickets in multi-thread way# Written by Vamei import threadingimport timeimport os # This function could be any function to do other chores.def doChore(): time.sleep(0.5) # Function for each threaddef booth(tid): global i global lock while True: lock.acquire() # Lock; or wait if other thread is holding the lock if i != 0: i = i – 1 # Sell tickets print(tid,\’:now left:\’,i) # Tickets left doChore() # Other critical operations else: print(\”Thread_id\”,tid,\” No more tickets\”) os._exit(0) # Exit the whole process immediately lock.release() # Unblock doChore() # Non-critical operations # Start of the main functioni = 100 # Available ticket number lock = threading.Lock() # Lock (i.e., mutex) # Start 10 threadsfor k in range(10): new_thread = threading.Thread(target=booth,args=(k,)) # Set up thread; target: the callable (function) to be run, args: the argument for the callable new_thread.start() # run the thread |
我们使用了两个全局变量,一个是i,用以储存剩余票数;一个是lock对象,用于同步线程对i的修改。此外,在最后的for循环中,我们总共设置了10个线程。每个线程都执行booth()函数。线程在调用start()方法的时候正式启动 (实际上,计算机中最多会有11个线程,因为主程序本身也会占用一个线程)。Python使用threading.Thread对象来代表线程,用threading.Lock对象来代表一个互斥锁 (mutex)。
有两点需要注意:
上面的Python程序非常类似于一个面向过程的C程序。我们下面介绍如何通过面向对象 (OOP, object-oriented programming,参看Python面向对象的基本概念和Python面向对象的进一步拓展) 的方法实现多线程,其核心是继承threading.Thread类。我们上面的for循环中已经利用了threading.Thread()的方法来创建一个Thread对象,并将函数booth()以及其参数传递给改对象,并调用start()方法来运行线程。OOP的话,通过修改Thread类的run()方法来定义线程所要执行的命令。
12345678910111213141516171819202122232425262728293031323334353637 | # A program to simulate selling tickets in multi-thread way# Written by Vamei import threadingimport timeimport os # This function could be any function to do other chores.def doChore(): time.sleep(0.5) # Function for each threadclass BoothThread(threading.Thread): def __init__(self, tid, monitor): self.tid = tid self.monitor = monitor threading.Thread.__init__(self) def run(self): while True: monitor[\’lock\’].acquire() # Lock; or wait if other thread is holding the lock if monitor[\’tick\’] != 0: monitor[\’tick\’] = monitor[\’tick\’] – 1 # Sell tickets print(self.tid,\’:now left:\’,monitor[\’tick\’]) # Tickets left doChore() # Other critical operations else: print(\”Thread_id\”,self.tid,\” No more tickets\”) os._exit(0) # Exit the whole process immediately monitor[\’lock\’].release() # Unblock doChore() # Non-critical operations # Start of the main functionmonitor = {\’tick\’:100, \’lock\’:threading.Lock()} # Start 10 threadsfor k in range(10): new_thread = BoothThread(k, monitor) new_thread.start() |
我们自己定义了一个类BoothThread, 这个类继承自thread.Threading类。然后我们把上面的booth()所进行的操作统统放入到BoothThread类的run()方法中。注意,我们没有使用全局变量声明global,而是使用了一个词典monitor存放全局变量,然后把词典作为参数传递给线程函数。由于词典是可变数据对象,所以当它被传递给函数的时候,函数所使用的依然是同一个对象,相当于被多个线程所共享。这也是多线程乃至于多进程编程的一个技巧 (应尽量避免上面的global声明的用法,因为它并不适用于windows平台)。
上面OOP编程方法与面向过程的编程方法相比,并没有带来太大实质性的差别。
threading.Thread对象: 我们已经介绍了该对象的start()和run(), 此外:
下面的对象用于处理多线程同步。对象一旦被建立,可以被多个线程共享,并根据情况阻塞某些进程。请与Linux多线程与同步中的同步工具参照阅读。
threading.Lock对象: mutex, 有acquire()和release()方法。
threading.Condition对象: condition variable,建立该对象时,会包含一个Lock对象 (因为condition variable总是和mutex一起使用)。可以对Condition对象调用acquire()和release()方法,以控制潜在的Lock对象。此外:
threading.Semaphore对象: semaphore,也就是计数锁(semaphore传统意义上是一种进程间同步工具,见Linux进程间通信)。创建对象的时候,可以传递一个整数作为计数上限 (sema = threading.Semaphore(5))。它与Lock类似,也有Lock的两个方法。
threading.Event对象: 与threading.Condition相类似,相当于没有潜在的Lock保护的condition variable。对象有True和False两个状态。可以多个线程使用wait()等待,直到某个线程调用该对象的set()方法,将对象设置为True。线程可以调用对象的clear()方法来重置对象为False状态。
练习
参照Linux多线程与同步中的condition variable的例子,使用Python实现。同时考虑使用面向过程和面向对象的编程方法。
更多的threading的内容请参考:
http://docs.python.org/library/threading.html
threading.Thread
Lock, Condition, Semaphore, Event