Python科学计算——任意波形拟合
admin
2023-07-30 21:23:10
0

任意波形的生成 (geneartion of arbitrary waveform) 在商业,军事等领域都有着重要的应用,诸如空间光通信 (free-space optics communication), 高速信号处理 (high-speed signal processing),雷达 (radar) 等。在任意波形生成后,如何评估生成的任意波形成为另外一个重要的话题。

scipy.optimize.leastsq

假设有一组实验数据,已知他们之间的函数关系:y=f(x),通过这些信息,需要确定函数中的一些参数项。例如,f 是一个线型函数 f(x)=k*x+b,那么参数 k 和 b 就是需要确定的值。如果这些参数用 p 表示的话,那么就需要找到一组 p 值使得如下公式中的 S 函数最小:

这种算法被称之为最小二乘拟合 (least-square fitting)。scipy 中的子函数库 optimize 已经提供实现最小二乘拟合算法的函数 leastsq。下面是 leastsq 函数导入的方式:

from scipy.optimize import leastsq

scipy.optimize.leastsq 使用方法

波形数据导入

在 Python科学计算——Numpy.genfromtxt 一文中,使用 numpy.genfromtxt 对数字示波器采集的三角波数据导入进行了介绍,今天,就以 4GHz三角波 波形的拟合为案例介绍任意波形的拟合方法。

Type:          raw
Points:        16200
Count:         1
...
Y Units:       Volt
XY Data:
2.4000000E-008, 1.4349E-002
2.4000123E-008, 1.6005E-002
2.4000247E-008, 1.5455E-002
2.4000370E-008, 1.5702E-002
...
data = np.genfromtxt(\'waveform.txt\',delimiter=\',\',skip_header=18)

模型的选择

在 Python科学计算——如何构建模型? 一文中,讨论了如何构建三角波模型。在标准三角波波形的基础上添加了横向,纵向的平移和伸缩特征参数,最后添加了噪声参数模拟了三角波幅度参差不齐的随机性特征。但在波形拟合时,并不是所有的特征参数都要纳入考量,例如,噪声参数应是波形生成系统的固有特征,正因为它的存在使得产生的波形存在瑕疵,因此,在进行波形拟合并评估时,不应将噪声参数纳入考量,最终模型如下:

def triangle_wave(x,p):
    a,b,c,T = p
    y = np.where(np.mod(x-b,T)=T/2, 4/T*(np.mod(x-b,T))-3+c/a, y)
    return a*y

波形拟合

在调用 scipy.optimize.leastsq 函数时,需要构建误差函数:

def residuals(p,y,x):
    return y - triangle_wave(x,p)

有时候,为了使图片有更好的效果,需要对数据进行一些处理:

x = data[:,0]
x_fig = map(lambda x : (x-data[0,0])*1e12, data[:,0]) # 画图数据
y = data[:,1]

leastsq 调用方式如下:

p0 = [1.056,215e-12,0.0108,2.51337e-10] # 初始参数
plsq = leastsq(residuals,p0,args=(y,x))
y2 = triangle_wave(x,plsq[0])

合理的设置 p0 可以减少程序运行时间,因此,可以在运行一次程序后,用拟合后的相应数据对 p0 进行修正。

数据可视化

在对波形进行拟合后,调用 pylab 对拟合前后的数据进行可视化:

pl.plot(x_fig, y, \'b\', label=\'Experiment data\', linewidth=3)
pl.plot(x_fig, y2, \'r--\',label=\'Fitting data\', linewidth=2)
pl.ylim(-1.5,2)
pl.xlabel(\'Time(ps)\')
pl.ylabel(\'Amplitude[a.u.]\')
pl.legend()
pl.show()


triangular waveform fitting

拟合效果评估

均方根误差 (root mean square error) 是一个很好的评判标准,它是观测值与真值偏差的平方和观测次数n比值的平方根,在实际测量中,观测次数n总是有限的,真值只能用最可信赖(最佳)值来代替.方根误差对一组测量中的特大或特小误差反映非常敏感,所以,均方根误差能够很好地反映出测量的精密度。

RMSE 用程序实现如下:

variances = map(lambda x,y : (x-y)**2, y, y2)
variance = np.sum(variances)  
RMSE =  np.sqrt(variance/len(x))

拟合效果,模型参数输出:

print RMSE,plsq[0]
>>> 1.63442970685e-05 [  1.05325324e+00   2.15580302e-10   1.07998635e-02   2.51337252e-10]

其他模型

leastsq 函数适用于任何波形的拟合,下面就来介绍一些常用的其他波形:

方波

def square_wave(x,p):
    a, b, c, T = p
    y = np.where(np.mod(x-b,T)T/2, -1+c/a, y)
    return a*y


square wave

高斯波形

def gaussian_wave(x,p):
    a, b, c, d= p
    return a*np.exp(-(x-b)**2/(2*c**2))+d


gaussian wave

Stay hungry, Stay foolish. — Steve Jobs

上一篇:python之virtualenv

下一篇:Django学习笔记

相关内容

热门资讯

Mobi、epub格式电子书如... 在wps里全局设置里有一个文件关联,打开,勾选电子书文件选项就可以了。
500 行 Python 代码... 语法分析器描述了一个句子的语法结构,用来帮助其他的应用进行推理。自然语言引入了很多意外的歧义,以我们...
定时清理删除C:\Progra... C:\Program Files (x86)下面很多scoped_dir开头的文件夹 写个批处理 定...
scoped_dir32_70... 一台虚拟机C盘总是莫名奇妙的空间用完,导致很多软件没法再运行。经过仔细检查发现是C:\Program...
65536是2的几次方 计算2... 65536是2的16次方:65536=2⁶ 65536是256的2次方:65536=256 6553...
小程序支付时提示:appid和... [Q]小程序支付时提示:appid和mch_id不匹配 [A]小程序和微信支付没有进行关联,访问“小...
pycparser 是一个用... `pycparser` 是一个用 Python 编写的 C 语言解析器。它可以用来解析 C 代码并构...
微信小程序使用slider实现... 众所周知哈,微信小程序里面的音频播放是没有进度条的,但最近有个项目呢,客户要求音频要有进度条控制,所...
Apache Doris 2.... 亲爱的社区小伙伴们,我们很高兴地向大家宣布,Apache Doris 2.0.0 版本已于...
python清除字符串里非数字... 本文实例讲述了python清除字符串里非数字字符的方法。分享给大家供大家参考。具体如下: impor...