import numpy as np
# 被积函数
def fun(x):
f = pow(x, 1.5)
return f
# 求梯形值
def T2n(a, b, n, Tn):
h = (b - a) / n # 步长
sum = 0.
for k in range(n):
sum += fun(a + (k + 0.5) * h)
T2n = Tn / 2. + sum * h / 2.
return T2n
# 求加速值
def romberg(max, a, b, epsilon): # max为计算最大次数,a、b为积分下、上限,epsilon为限定误差
tm = np.zeros(max, dtype=float) # 第m行元素
tm1 = np.zeros(max, dtype=float) # 第m+1行元素
tm[0] = (b - a) * (fun(a) + fun(b)) / 2. # 初始值
print(tm)
k = 0
err = 1
while (err > epsilon and k < max - 1): # 当误差小于预定误差,或计算次数大于最大次数时停止
n = 2 ** k
m = 1
tm1[0] = T2n(a, b, n, tm[0])
while (err > epsilon and m <= (k + 1)): # 当误差小于预定误差,或本行全部计算完毕后停止
tm1[m] = tm1[m - 1] + (tm1[m - 1] - tm[m - 1]) / (4. ** m - 1)
result = tm1[m]
err1 = abs(tm1[m] - tm[m - 1]) # 对角元素差
err2 = abs(tm1[m] - tm1[m - 1]) # 同行前后两元素差
err = min(err1, err2)
m += 1
tm = np.copy(tm1) # 下移一行
k += 1
print(tm)
return result
if __name__ == '__main__':
f1 = romberg(6, 0, 1, 1.e-10)
print(f1)
上一篇:贪心算法
下一篇:Selenium常用方法